翻訳と辞書
Words near each other
・ Evolutionary developmental robotics
・ Evolutionary dynamics
・ Evolutionary ecology
・ Evolutionary economics
・ Evolutionary educational psychology
・ Evolutionary epistemology
・ Evolutionary ethics
・ Evolutionary fauna
・ Evolutionary game theory
・ Evolutionary Games Infographic Project gallery
・ Evolutionary Governance Theory
・ Evolutionary grade
・ Evolutionary graph theory
・ Evolutionary guidance media
・ Evolutionary history of life
Evolutionary history of plants
・ Evolutionary Humanism
・ Evolutionary ideas of the Renaissance and Enlightenment
・ Evolutionary informatics
・ Evolutionary Informatics Lab
・ Evolutionary invasion analysis
・ Evolutionary landscape
・ Evolutionary leadership theory
・ Evolutionary linguistics
・ Evolutionary logic
・ Evolutionary Map of the Universe
・ Evolutionary medicine
・ Evolutionary multimodal optimization
・ Evolutionary music
・ Evolutionary musicology


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Evolutionary history of plants : ウィキペディア英語版
Evolutionary history of plants

The evolution of plants has resulted in widely varying levels of complexity, from the earliest algal mats, through bryophytes, lycopods, ferns to the complex gymnosperms and angiosperms of today. While many of the groups which appeared earlier continue to thrive, as exemplified by algal dominance in marine environments, more recently derived groups have also displaced previously ecologically dominant ones, e.g. the ascendance of flowering plants over gymnosperms in terrestrial environments.
In the Ordovician, around , the first land plants appeared.〔"The oldest fossils reveal evolution of non-vascular plants by the middle to late Ordovician Period (~450–440 m.y.a.) on the basis of fossil spores." (Transition of plants to land )〕 These began to diversify in the Late Silurian, around , and the results of their diversification are displayed in remarkable detail in an early Devonian fossil assemblage from the Rhynie chert. This chert preserved early plants in cellular detail, petrified in volcanic springs.
By the middle of the Devonian, most of the features recognised in plants today are present, including roots and leaves. Late Devonian free-sporing plants such as ''Archaeopteris'' had secondary vascular tissue that produced wood and had formed forests of tall trees. Also by late Devonian, ''Elkinsia'', an early seed fern, had evolved seeds.
Evolutionary innovation continued into the Carboniferous and is still ongoing today. Most plant groups were relatively unscathed by the Permo-Triassic extinction event, although the structures of communities changed. This may have set the scene for the appearance of the flowering plants in the Triassic (~), and their later diversification in the Cretaceous and Paleogene. The latest major group of plants to evolve were the grasses, which became important in the mid-Paleogene, from around . The grasses, as well as many other groups, evolved new mechanisms of metabolism to survive the low and warm, dry conditions of the tropics over the last .
==Colonization of land==

Land plants evolved from a group of green algae, perhaps as early as ;〔 some molecular estimates place their origin even earlier, as much as . Their closest living relatives are the charophytes, specifically Charales; assuming that the Charales' habit has changed little since the divergence of lineages, this means that the land plants evolved from a branched, filamentous alga dwelling in shallow fresh water, perhaps at the edge of seasonally desiccating pools.〔 The alga would have had a haplontic life cycle: it would only very briefly have had paired chromosomes (the diploid condition) when the egg and sperm first fused to form a zygote; this would have immediately divided by meiosis to produce cells with half the number of unpaired chromosomes (the haploid condition). Co-operative interactions with fungi may have helped early plants adapt to the stresses of the terrestrial realm.
Plants were not the first photosynthesisers on land; weathering rates suggest that photosynthetic organisms were already living on the land ,〔 and microbial fossils have been found in freshwater lake deposits from , but the carbon isotope record suggests that they were too scarce to impact the atmospheric composition until around . These organisms, although phylogenetically diverse, were probably small and simple, forming little more than an "algal scum".〔
The first evidence of plants on land comes from spores of mid-Ordovician age (early Llanvirn, ~). These spores, known as cryptospores, were produced either singly (monads), in pairs (dyads) or groups of four (tetrads), and their microstructure resembles that of modern liverwort spores, suggesting they share an equivalent grade of organisation. Their walls contain sporopollenin – further evidence of an embryophytic affinity. It could be that atmospheric 'poisoning' prevented eukaryotes from colonising the land prior to this, or it could simply have taken a great time for the necessary complexity to evolve.
Trilete spores similar to those of vascular plants appear soon afterwards, in Upper Ordovician rocks. Depending exactly when the tetrad splits, each of the four spores may bear a "trilete mark", a Y-shape, reflecting the points at which each cell squashed up against its neighbours.〔 However, this requires that the spore walls be sturdy and resistant at an early stage. This resistance is closely associated with having a desiccation-resistant outer wall—a trait only of use when spores must survive out of water. Indeed, even those embryophytes that have returned to the water lack a resistant wall, thus don't bear trilete marks.〔 A close examination of algal spores shows that none have trilete spores, either because their walls are not resistant enough, or in those rare cases where it is, the spores disperse before they are squashed enough to develop the mark, or don't fit into a tetrahedral tetrad.〔
The earliest megafossils of land plants were thalloid organisms, which dwelt in fluvial wetlands and are found to have covered most of an early Silurian flood plain. They could only survive when the land was waterlogged. There were also microbial mats.
Once plants had reached the land, there were two approaches to dealing with desiccation. The bryophytes avoid it or give in to it, restricting their ranges to moist settings, or drying out and putting their metabolism "on hold" until more water arrives. Tracheophytes resist desiccation: They all bear a waterproof outer cuticle layer wherever they are exposed to air (as do some bryophytes), to reduce water loss, but—since a total covering would cut them off from in the atmosphere—they rapidly evolved stomata, small openings to allow, and control the rate of, gas exchange. Tracheophytes also developed vascular tissue to aid in the movement of water within the organisms (see below), and moved away from a gametophyte dominated life cycle (see below). Vascular tissue also facilitated upright growth without the support of water and paved the way for the evolution of larger plants on land.
The establishment of a land-based flora caused increased accumulation of oxygen in the atmosphere, as the plants produced oxygen as a waste product. When this concentration rose above 13%, wildfires became possible. This is first recorded in the early Silurian fossil record by charcoalified plant fossils. Apart from a controversial gap in the Late Devonian, charcoal is present ever since.
Charcoalification is an important taphonomic mode. Wildfire drives off the volatile compounds, leaving only a shell of pure carbon. This is not a viable food source for herbivores or detritovores, so is prone to preservation; it is also robust, so can withstand pressure and display exquisite, sometimes sub-cellular, detail.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Evolutionary history of plants」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.